Chapter Notes: Set Theory & Relations

Set Theory
Introduction

Set Theory is a branch of mathematical logic that deals with the study of sets, which are well-defined collections of
objects or elements. The elements of a set can be anything: numbers, letters, objects, etc. Set theory forms the
foundation for many areas of mathematics and computer science.

e Set Notation: Sets are typically denoted using curly braces {}. For example, a set of natural numbers less than 5
can be written as A={1,2,3,4}A =\{1, 2, 3, 4\}.

e Types of Sets:
o Finite Set: A set with a limited number of elements, e.g., A={1,2,3}A =\{1, 2, 3\}.
o Infinite Set: A set with an unlimited number of elements, e.g., the set of natural numbers N\mathbb{N}.
o Null or Empty Set: A set with no elements, denoted as @\emptyset.
o Singleton Set: A set containing only one element, e.g., A={a}A = \{a\}.
o Universal Set: A set containing all the elements under consideration, typically denoted as UU.
Combination of Sets
There are various operations that can be performed on sets to create new sets:

e Union: The union of two sets AA and BB is the set of all elements that are in either AA or BB (or both). Denoted
as AUBA \cup B.

o Example: A={1,2},B={2,3}=AUB={1,2,3}A =\{1, 2\}, B =\{2, 3\} \Rightarrow A \cup B =\{1, 2, 3\}.

e Intersection: The intersection of two sets AA and BB is the set of all elements that are in both AA and BB.
Denoted as ANBA \cap B.

o Example: A={1,2},B={2,3}=AnB={2}A =\{1, 2\}, B =\{2, 3\} \Rightarrow A \cap B = \{2\}.

o Difference: The difference of two sets AA and BB, denoted as A-BA - B, is the set of elements that are in AA but
not in BB.

o Example: A={1,2,3},B={2,3}=>A-B={1}A = \{1, 2, 3\}, B =\{2, 3\} \Rightarrow A - B = \{1\}.

e Complement: The complement of a set AA, denoted as A’A’, is the set of all elements in the universal set UU
that are not in AA.

o Example: U={1,2,3,4},A={1,2}=A'={3,4}U =\{1, 2, 3, 4\}, A=\{1, 2\} \Rightarrow A' =\{3, 4\}.
Relations
Definition
A relation on a set AA is a subset of the Cartesian product AxAA \times A. It defines a relationship between elements of

the set. A relation RR on AA is represented as: REAXAR \subseteq A \times A For example, if A={1,2,3}]A=\{1, 2, 3\}, a
relation RR can be {(1,2),(2,3)1\{(1, 2), (2, 3)\}, indicating that 1 is related to 2, and 2 is related to 3.

Operations on Relations

e Union of Relations: If R1IR_1 and R2R_2 are two relations on AA, their union RIUR2R_1 \cup R_2 is the relation
containing all pairs that belong to either R1R_1 or R2R_2.

¢ Intersection of Relations: The intersection RINR2R_1 \cap R_2 consists of all pairs that belong to both R1R_1
and R2R_2.



o Difference of Relations: The difference R1-R2R_1 - R_2 consists of all pairs in R1R_1 that are not in R2R_2.

e Complement of a Relation: The complement of RR is the set of all pairs in AXAA \times A that do not belong to
RR.

Properties of Relations
¢ Reflexive: A relation RR is reflexive if for every element a€Aa \in A, (a,a)€R(a, a) \in R.
e Symmetric: A relation RR is symmetric if for every pair (a,b)€ER(a, b) \in R, (b,a)ER(b, a) \in R.

e Antisymmetric: A relation RR is antisymmetric if for every pair (a,b)€R(a, b) \in R and (b,a)€R(b, a) \in R, it must
be the case that a=ba = b.

e Transitive: A relation RR is transitive if whenever (a,b)€R(a, b) \in R and (b,c)€R(b, c) \in R, (a,c)€R(a, c) \in R.
Composite Relations

The composite of two relations R1IR_1 and R2R_2 is a relation that connects elements via a third element. It is denoted
as R1oR2R_1 \circ R_2, and it is defined by: (a,c)€R10R2 if there exists a b such that (a,b)€R1 and (b,c)€R2(a, c)\inR_1
\circ R_2 \text{ if there exists a } b \text{ such that } (a, b) \in R_1 \text{ and } (b, c) \in R_2

Equality of Relations

Two relations R1IR_1 and R2R_2 on a set AA are equal if they contain the same pairs: R1=R2 & V(a,b)EAxA,(a,b)ER]1 &
(a,b)ER2R_1 = R_2\iff \forall (a, b) \in A\times A, (a, b) \in R_1\iff (a, b) \inR_2

Recursive Definition of Relation
A relation RR can be recursively defined using a base case and a recursive case. For example:
e Base Case: If (a,a)ER(a, a) \in R, then aa is related to itself.
e Recursive Case: If (a,b)€R(a, b) \in R and (b,c)€R(b, c) \in R, then (a,c)ER(a, c) \in R.
Order of Relations

The order of a relation refers to the number of elements in the relation. If a relation RR is a subset of AXAA \times A, its
order is the number of pairs it contains.

POSET & Lattices

Hasse Diagram

A Hasse Diagram is a graphical representation of a partially ordered set (POSET). In this diagram:
e Each element is represented by a vertex.

e Anedge from element aa to element bb is drawn if a<ba \leq b and there is no element cc such that a<c<ba < c <
b.

POSET (Partially Ordered Set)

A POSET is a set AA equipped with a binary relation <\leq (or any other suitable ordering relation) that satisfies the
following properties:

e Reflexive: a<aa \leq a for all a€Aa \in A.

e Antisymmetric: If a<ba \leq b and b<ab \leq a, then a=ba = b.

e Transitive: If a<ba \leq b and b<cb \leq c, then a<ca \leq c.
Lattices

A lattice is a special type of POSET where every pair of elements has both a least upper bound (supremum) and a
greatest lower bound (infimum). A lattice is defined as:



e Join: The least upper bound (supremum) of two elements, denoted aVba \vee b.
e Meet: The greatest lower bound (infimum) of two elements, denoted aAba \wedge b.
Properties of Lattices
e Bounded Lattice: A lattice that has a greatest element (denoted 11) and a least element (denoted 00).

¢ Complemented Lattice: A lattice in which every element has a complement. For an element aa, there exists an
element bb such that avb=1a \vee b = 1 and aAb=0a \wedge b = 0.

e Distributed Lattice: A lattice where the meet and join operations distribute over each other, i.e.,
aA(bvc)=(aAb)V(aAc)a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) and aV(bAc)=(aVb)A(aVc)a \vee (b
\wedge c) = (a \vee b) \wedge (a \vee c).

e Modular Lattice: A lattice where the distributive property holds only in certain cases. Specifically,
aV(bAc)=(avb)A(aVvc)a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) holds when a<ca \leq c.

e Complete Lattice: A lattice where every subset has both a supremum and an infimum.
Conclusion

Understanding Set Theory and Relations is crucial for solving many computer science problems, such as database
theory, algorithms, and graph theory. The concept of POSETs and Lattices is also fundamental in areas like logic, algebra,
and discrete mathematics, where the organization and relationship of elements play a key role in the design and analysis
of systems.

These concepts form the mathematical backbone of many computational structures, algorithms, and data
representations used in modern computing.

Chapter Notes: Functions & Boolean Algebra

Functions
Definition of a Function

A function is a relation between two sets, typically denoted as AA and BB, where each element of the set AA (called the
domain) is associated with exactly one element of the set BB (called the codomain). A function from set AA to set BB is
denoted as:

f:A->Bf: A\to B
The element f(a)f(a) is the image of a€Aa \in A under the function ff.
e Domain: The set of all possible inputs to the function.
e Codomain: The set of all possible outputs.
e Range: The set of actual outputs produced by the function for all elements in the domain.
Classification of Functions
Functions can be classified based on their properties or their behavior. Some common classifications include:
1. One-to-One (Injective) Function:

o A function f:A->Bf: A \to B is one-to-one if different elements in the domain map to different elements
in the codomain.

o Formally, f(al)=f(a2)f(a_1) = f(a_2) implies al=a2a_1=a_2.



2. Onto (Surjective) Function:
o Afunction f:A->Bf: A \to B is onto if every element of BB is the image of at least one element in AA.
o For every beBb \in B, there exists at least one a€Aa \in A such that f(a)=bf(a) = b.

3. One-to-One Correspondence (Bijective) Function:
o Afunction f:A->Bf: A \to B is bijective if it is both one-to-one and onto.

o A bijective function establishes a perfect pairing between the elements of AA and BB, with no elements
left unpaired in either set.

4. Constant Function:

o Afunction f:A->Bf: A \to B is constant if it maps every element of AA to the same element of BB, i.e.,
f(al)=f(a2)f(a_1) =f(a_2) for all al,a2€Aa_1, a_2 \in A.

5. Identity Function:
o Afunction f:A>Af: A\to A is the identity function if f(a)=af(a) = a for all a€Aa \in A.
6. Inverse Function:

o If afunction f:A->Bf: A\to B is bijective, its inverse f-1:B->AfA{-1}: B \to A exists, and for every element
beBb \in B, f-1(f(a))=af*{-1}(f(a)) = a and f(f-1(b))=bf(f*{-1}(b)) = b.

7. Many-to-One Function:

o Afunction f:A->Bf: A \to B is many-to-one if two or more elements in AA map to the same element in
BB.

Operations on Functions
Functions can be combined or operated upon in several ways:
1. Function Composition:

o Given two functions f:A=>Bf: A \to B and g:B—>Cg: B \to C, the composition of ff and gg, denoted by gofg
\circ f, is a function from AA to CC defined by: (gof)(a)=g(f(a))(g \circ f)(a) = g(f(a))

2. Inverse of a Function:

o As mentioned earlier, if ff is a bijective function, its inverse f-1f*{-1} is defined such that:
f-1(f(a))=aandf(f-1(b))=bf*{-1}(f(a)) = a \quad \text{and} \quad f(f*{-1}(b)) = b

3. Scalar Multiplication of Functions:

o For a constant kk, the scalar multiplication of a function ff is the function k-fk \cdot f where
(k-f)(a)=k-f(a)(k \cdot f)(a) = k \cdot f(a).

Growth of Functions

The growth rate of a function describes how quickly the value of the function increases as its input grows. In computer
science, this concept is important for analyzing the efficiency of algorithms, particularly in terms of time complexity.

e Big-O Notation: Represents the upper bound of the growth rate of a function, i.e., the worst-case time
complexity.

o For example, if f(n)=0(g(n))f(n) = O(g(n)), then there exists a constant cc such that f(n)<c-g(n)f(n) \leq ¢
\cdot g(n) for large nn.

e Common Growth Rates:
o Constant: O(1)0(1)

o Logarithmic: O(logiin)O(\log n)



o Linear: O(n)O(n)
o Quadratic: O(n2)0(n"2)
o Cubic: O(n3)0O(n"3)

o Exponential: O(2n)O(2”n)

Boolean Algebra
Introduction

Boolean Algebra is a branch of algebra that deals with logical variables and operators. It was introduced by George Boole
in the 19th century and is fundamental in digital circuit design, computer science, and logic theory.

In Boolean Algebra, the variables can take only two values: True (1) or False (0). The operations on these values include
AND, OR, and NOT.

Axioms and Theorems of Boolean Algebra

Boolean Algebra operates on a set of axioms and theorems that govern its operations. The axioms of Boolean algebra
are:

1. Identity Law:
o A-1=AA\cdot1=A
o A+0=AA+0=A
2. Null Law:
o A-0=0A\cdot0=0
o A+1=1A+1=1
3. Idempotent Law:
o A-A=AA\cdotA=A
o A+A=AA+A=A
4. Complement Law:
o A-A =0A \cdot \overline{A} =0
o A+A =1A+\overline{A}=1
5. Distributive Law:
o A-(B+C)=(A-B)+(A-C)A \cdot (B + C) = (A \cdot B) + (A \cdot C)
o A+(B-C)=(A+B)-(A+C)A + (B \cdot C) = (A + B) \cdot (A + C)
6. Commutative Law:
o A-B=B-AA\cdot B = B \cdot A
o A+B=B+AA+B=B+A
7. Associative Law:
o A-(B-C)=(A-B)-CA \cdot (B \cdot C) = (A \cdot B) \cdot C
o A+(B+C)=(A+B)+CA+(B+C)=(A+B)+C

Algebraic Manipulation of Boolean Expressions



Boolean expressions can be simplified using algebraic rules, much like arithmetic algebra. This is done to make logical
circuits more efficient.

e Example: Simplify A-(A+B)A \cdot (A + B): Using the Distributive Law, we get: A-(A+B)=A-A+A-B=A+A-B=AA \cdot
(A+B)=A\cdot A+ A\cdot B=A + A\cdot B = A (since A-A=AA \cdot A = A).

Simplification of Boolean Functions

The goal of simplifying Boolean functions is to reduce the number of terms and operations, which in turn simplifies the
implementation of digital circuits.

e Common Techniques:
o Boolean Identities: Using laws like the Idempotent Law and the Complement Law.

o Consensus Theorem: A term can be removed from a Boolean expression if its presence does not affect
the result. For example: A-B+A -C+B-C=A-B+A™ -CA \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B
+ \overline{A} \cdot C

o Quine—McCluskey Algorithm: A tabular method used for minimizing Boolean functions.
Karnaugh Maps (K-Maps)

Karnaugh maps (or K-maps) are a graphical method for simplifying Boolean functions. It is particularly useful for
functions with up to six variables.

e Procedure:
o Plot the truth table of a Boolean function in a grid.
o Group adjacent cells containing 1s (ones) in powers of two (i.e., 1, 2, 4, 8, etc.).

o For each group, write the simplified Boolean expression for the variables that are constant within the
group.

o The final result is the sum (OR) of these simplified expressions.

e Example: Consider the function f(A,B,C)=A"-B+A-C f(A, B, C) = \overline{A} \cdot B + A \cdot \overline{C}. By
plotting this in a K-map and grouping the 1s, we can reduce the expression.

Conclusion

Functions and Boolean Algebra are essential topics in discrete mathematics and computer science. Functions help
describe relationships between sets and are foundational to areas such as algorithms and data structures. Boolean
Algebra, on the other hand, plays a crucial role in simplifying logical expressions and designing efficient digital circuits,
which are integral to computing systems. Understanding these concepts enables better problem-solving, algorithm
optimization, and circuit design.

Chapter Notes: Theory of Logic & Predicate Logic

Theory of Logic
Proposition

A proposition (also known as a statement) is a declarative sentence that is either true or false, but not both. In logic,
propositions are the basic building blocks of logical reasoning. They are denoted by symbols such as PP, QQ, RR, etc.

e Example:

o "The sky is blue" is a proposition because it can be true or false.



o "2+2=>5"isalso aproposition, but it is false.
A proposition is often represented in logical notation as PP, and its truth value is either True (T) or False (F).

Truth Tables

A truth table is a tabular representation of all possible truth values for a set of propositions. It shows the outcome of

logical operations (like AND, OR, NOT, etc.) on those propositions. Truth tables help in analyzing the validity of logical
expressions.

e Example of a Truth Table for AND (PAQP \land Q):

PP QQ PAQP \land Q
TT T
T F F
FTF
FF F

This truth table shows that PAQP \land Q is true only when both PP and QQ are true.

Tautology

A tautology is a logical expression that is always true, regardless of the truth values of the individual propositions. In
other words, a tautology is a formula that evaluates to true for every possible combination of truth values of its
propositions.

e Example:

o PV-PP\lor\neg P (Law of excluded middle): This is a tautology because, whether PP is true or false,
PV-PP \lor \neg P will always be true.

Satisfiability

A logical expression is satisfiable if there exists at least one combination of truth values for its variables that makes the
expression true. If an expression can be made true for some assignment of truth values, it is said to be satisfiable.

e Example:

o The expression PAQP \land Q is satisfiable because there is a combination of PP and QQ (specifically,
P=TP =T and Q=TQ = T) that makes it true.

Contradiction

A contradiction is a logical expression that is always false, regardless of the truth values of the propositions involved. A
contradiction cannot be satisfied under any conditions.

e Example:

o PA-PP\land \neg P is a contradiction because it asserts that PP is both true and false at the same time,
which is impossible.

Algebra of Propositions

The algebra of propositions refers to the set of operations and rules used to manipulate and simplify logical expressions.
It involves a set of logical connectives, such as AND, OR, NOT, and implication, which follow specific algebraic rules
(analogous to the laws of algebra in arithmetic).

e Basic Operations:
o Conjunction (AND): PAQP \land Q

o Disjunction (OR): PVvQP \lor Q



o Negation (NOT): -P\neg P

o Implication: P->QP \to Q

o Biconditional: P<>QP \leftrightarrow Q

e Laws in the Algebra of Propositions:

o Identity Law: PAT=PP \land T = P, PVF=PP \lor F=P

o Domination Law: PAF=FP \land F=F, PVT=TP\lorT=T

o Idempotent Law: PAP=PP \land P = P, PVP=PP \lor P = P

o Double Negation Law: —=(-P)=P\neg(\neg P) = P

o De Morgan’s Laws:
= -(PAQ)=-PV-Q\neg(P \land Q) =\neg P \lor\neg Q
=  —(PvQ)=-PA-Q\neg(P \lor Q) = \neg P \land \neg Q

Theory of Inference

In logic, inference refers to the process of deriving new propositions from existing ones based on logical rules. An
inference rule allows you to make conclusions from premises.

e Example of Inference Rules:
o Modus Ponens: If P->QP \to Q and PP, then QQ.
o Modus Tollens: If P->QP \to Q and -Q\neg Q, then -P\neg P.
o Hypothetical Syllogism: If P>QP \to Q and Q—>RQ \to R, then P>RP \to R.

Inferences can be made through deductive reasoning, where the conclusion necessarily follows from the premises, or
inductive reasoning, where the conclusion is likely but not certain.

Predicate Logic
First Order Predicate

Predicate logic extends propositional logic by involving predicates and quantifiers. A predicate is a function that takes
one or more arguments and returns a proposition. A first-order predicate is a predicate that takes one argument, often
represented by a variable.

e Example:
o P(x)P(x) could represent "x is a prime number."
o VxP(x)\forall x\, P(x) means "For all x, x is a prime number."

A predicate logic expression involves not only propositions but also variables and functions that can take values from a
specific domain.

Well-formed Formula (WFF) of Predicate Logic

A well-formed formula (WFF) in predicate logic is a syntactically correct expression constructed from predicates,
variables, logical connectives, and quantifiers. The structure of a WFF follows rules similar to those in propositional logic,
but with added complexity due to the involvement of predicates and quantifiers.

e Example of WFF:
o Vx(P(x)=>Q(x))\forall x \, (P(x) \to Q(x)): "For all x, if x is a prime, then x is greater than 1."

o 3Ix P(x)\exists x \, P(x): "There exists an x such that x is prime."



Quantifiers

In predicate logic, quantifiers are used to specify the scope of a variable in a logical expression. There are two main
types of quantifiers:

1. Universal Quantifier ( V\forall ):

o The universal quantifier Vx\forall x indicates that the statement it precedes is true for all values of xx in
the domain.

o Example: Vx P(x)\forall x \, P(x) means "For all xx, P(x)P(x) is true."
2. Existential Quantifier ( 3\exists ):

o The existential quantifier Ix\exists x asserts that there is at least one value of xx for which the statement
is true.

o Example: 3x P(x)\exists x \, P(x) means "There exists at least one xx such that P(x)P(x) is true."
Inference Theory of Predicate Logic

Inference in predicate logic involves deriving conclusions from a set of premises using logical rules. Just like in
propositional logic, predicate logic has inference rules that allow you to derive conclusions from given premises.
However, predicate logic also includes rules for handling quantifiers and variables.

¢ Rules of Inference for Quantifiers:
o Universal Instantiation (Ul): From Vx P(x)\forall x \, P(x), you can infer P(a)P(a) for any particular aa.
o Existential Generalization (EG): From P(a)P(a), you can infer 3x P(x)\exists x \, P(x).

o Universal Generalization (UG): From a conclusion about a particular element, you can generalize to all
elements, i.e., from P(a)P(a) for an arbitrary aa, infer Vx P(x)\forall x \, P(x).

e Example of Inference:

o Given the premises Vx (P(x)=>Q(x))\forall x \, (P(x) \to Q(x)) and P(a)P(a), we can infer Q(a)Q(a) by
Universal Instantiation and Modus Ponens.

Conclusion

Theory of Logic and Predicate Logic provide the foundational structures for reasoning about truth, validity, and
inference in mathematics, computer science, and artificial intelligence. While propositional logic focuses on simple
statements and their relationships, predicate logic allows for more complex statements involving variables and
quantifiers, making it a powerful tool for formal reasoning. The rules and principles discussed in this chapter are
essential for understanding how logical systems work, forming the basis for logical proofs, programming languages, and
reasoning systems.

Chapter Notes: Algebraic Structures

Algebraic Structures: Definition

In mathematics, an algebraic structure is a set of elements equipped with one or more operations that satisfy specific
axioms or rules. These operations are typically binary (involving two elements from the set), and the structures are
fundamental in various branches of mathematics, including group theory, ring theory, and field theory.

Key Types of Algebraic Structures:



e Group: A set with a binary operation that satisfies four properties: closure, associativity, identity element, and
invertibility.

e Ring: A set equipped with two operations (addition and multiplication) that satisfies certain properties, such as
associativity and distributivity.

e Field: Aring where every non-zero element has a multiplicative inverse.

Groups
Definition of a Group

A group is an algebraic structure GG with a binary operation (often denoted as -\cdot or ++) that satisfies four
fundamental properties:

1. Closure: For all a,b€Ga, b \in G, the result of the operation a-ba \cdot b must also belong to GG.

2. Associativity: For all a,b,c€Ga, b, c\in G, the equation (a-b)-c=a-(b-c)(a \cdot b) \cdot c = a \cdot (b \cdot c) must
hold.

3. Identity Element: There exists an identity element e€Ge \in G such that for every element a€Ga\in G,
a-e=e-a=aa \cdote = e \cdota = a.

4. Inverse Element: For every element a€Ga \in G, there exists an inverse element a-1€Ga”{-1} \in G such that
a-a-1=a-1-a=ea \cdot a”{-1} = a*{-1} \cdot a = e.

Subgroups and Order of Groups

e A subgroup HH of a group GG is a subset of GG that itself forms a group under the same operation as GG. For HH
to be a subgroup, it must satisfy the group properties:

1. Closure: If a,b€Ha, b \in H, then a-b€Ha \cdot b \in H.
2. ldentity: The identity element of GG must be in HH.
3. Inverses: If a€Ha\in H, then a-1€Ha*{-1}\in H.

e The order of a group is the number of elements in the group, denoted |G||G|. The order of an element a€Ga \in
G, denoted o(a)o(a), is the smallest positive integer nn such that an=ea”n = e (where ee is the identity element).

Cyclic Groups

A group GG is called cyclic if there exists an element geGg \in G such that every element of GG can be written as gng”*n
for some integer nn. The group is said to be generated by gg, and gg is called a generator of the group. A cyclic group is
isomorphic to the additive group of integers modulo some nn, denoted Zn\mathbb{z} n.

e Example: Z5\mathbb{Z}_5 under addition modulo 5 is a cyclic group generated by 11.
Cosets

A coset is a subset of a group formed by adding (or multiplying) a fixed element aa to each element of a subgroup HH of
GG. There are two types of cosets:

1. Left Coset: A left coset of HH with respect to a€Ga \in G is the set aH={a-h|h€H}aH = \{ a \cdot h \mid h \in H\}.

2. Right Coset: A right coset of HH with respect to a€Ga \in G is the set Ha={h-alheH}Ha =\{ h \cdot a \mid h\in H
\}L

Cosets of a subgroup partition the group into disjoint subsets.
Lagrange’s Theorem

Lagrange’s Theorem states that if GG is a finite group and HH is a subgroup of GG, then the order (number of elements)
of HH divides the order of GG. That is,



|Gl=|H|-[G:H]|G| = |H]| \cdot [G:H]
where [G:H][G:H] is the index of HH in GG, representing the number of distinct cosets of HH in GG.

e Example: In the group Z6\mathbb{Z} 6 (integers modulo 6), the subgroups are {0}\{0\}, {0,3}\{0, 3\}, and
{0,1,2,3,4,5)\{0, 1, 2, 3, 4, 5\}. The orders of these subgroups divide 6.

Normal Subgroups

A normal subgroup NN of a group GG is a subgroup that is invariant under conjugation by elements of GG. That is, for all
g€Gg\in G and nENn \in N, the element g-n-g-1€Ng \cdot n \cdot g*{-1} \in N. Normal subgroups are important
because the quotient group G/NG/N can be formed.

e Example: In Z6\mathbb{Z} 6, the subgroup {0,3)\{0, 3\} is normal because 3+x=x+33 + x \equiv x + 3 modulo 6
for all xx.

Permutation Groups and Symmetric Groups
Permutation Groups

A permutation is a rearrangement of elements in a set. The set of all permutations of a finite set SS forms a group called
the symmetric group, denoted SnS_n, where nn is the number of elements in SS.

e Example: The symmetric group S3S_3 consists of all possible permutations of three elements {1,2,3}\{1, 2, 3\},
which are the elements: {(1),(12),(13),(23),(132),(123)}\{ (1), (12), (13), (23), (132), (123) \}.

The operation in a symmetric group is composition of permutations, which is associative, has an identity permutation
(which leaves elements unchanged), and each permutation has an inverse.

Symmetric Groups

The symmetric group SnS_n is the group of all permutations of nn elements. The order of SnS_n is nIn! (factorial), and
the group consists of all possible bijections (one-to-one and onto functions) from the set {1,2,...,n}\{1, 2, \ldots, n\} to
itself.

Group Homomorphisms
Definition of Group Homomorphisms

A group homomorphism is a function ¢:G->H\varphi: G \to H between two groups GG and HH that preserves the group
operation. That is, for all a,b€Ga, b \in G,

d(a-b)=d(a)-d(b)\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)

A homomorphism must map the identity element of GG to the identity element of HH, and it must map the inverse of
each element in GG to the inverse of the image in HH.

e Example: The map ¢:26->Z3\varphi: \mathbb{zZ} 6 \to \mathbb{z} 3, given by ¢(x)=xmod 3\varphi(x) = x \mod
3, is a homomorphism because it preserves addition modulo 6 and modulo 3.

Kernel and Image of a Homomorphism

e The kernel of a homomorphism ¢:G->H\varphi: G \to H is the set of elements in GG that map to the identity
element of HH, i.e., ker(¢)={g€Gld(g)=eHNtext{ker}(\varphi) = \{g \in G \mid \varphi(g) = e_H\}.

e The image of a homomorphism is the set of all elements in HH that are the image of some element of GG, i.e.,
im(d)={d(g)lgeGNtext{im}(\varphi) = \{\varphi(g) \mid g \in G\}.

Rings and Fields



Rings

A ring is an algebraic structure consisting of a set RR equipped with two operations: addition (+) and multiplication (x). A
ring must satisfy the following properties:

1. (R,+)(R, +)is an abelian group (i.e., addition is commutative and associative, and there is an additive identity).
2. Multiplication is associative.

3. Distributivity: Multiplication distributes over addition, i.e., a-(b+c)=a-b+a-ca \cdot (b + c) =a \cdot b + a \cdot ¢
and (a+b)-c=a-c+b-c(a + b) \cdot c = a \cdot ¢ + b \cdot c.

4. Multiplicative identity (optional): If there is an element 11 such that a-1=aa \cdot 1 = a for all a€Ra \in R, the
ring is called a unital ring.

e Example: The set of integers Z\mathbb{Z} with usual addition and multiplication is a ring.
Fields

A field is a ring with the additional property that every non-zero element has a multiplicative inverse. Fields have the
following properties:

1. (F+)(F, +) is an abelian group.
2. (F\{0},")(F \setminus \{O\}, \cdot) is an abelian group (multiplicative inverses exist for all non-zero elements).
3. Distributivity of multiplication over addition holds.

e Example: The set of rational numbers Q\mathbb{Q}, real numbers R\mathbb{R}, and complex numbers
C\mathbb{C} are fields.

Conclusion

Algebraic structures like groups, rings, and fields form the foundation of many areas of mathematics and computer
science. Groups are fundamental to symmetry, algebraic operations, and cryptography, while rings and fields play vital
roles in algebraic number theory, polynomial equations, and coding theory. Understanding these structures and their
properties is crucial for solving complex mathematical problems and modeling various systems.

Chapter Notes: Graphs and Combinatorics

Graphs
Definition and Terminology

A graph GG is a mathematical structure consisting of a set of vertices (also called nodes) and a set of edges (also called
arcs or links), where each edge connects a pair of vertices. The basic components of a graph can be formally defined as
follows:

e \Vertices: The individual points in the graph, typically represented by V(G)V(G).

e Edges: The connections between vertices, often represented as E(G)E(G). Each edge connects two vertices, and
may be directed (in a directed graph) or undirected (in an undirected graph).

The graph can be represented as a pair G=(V,E)G = (V, E), where VV is the set of vertices, and EE is the set of edges.



e Degree: The degree of a vertex vv in an undirected graph is the number of edges incident to it. In a directed
graph, a vertex has an in-degree (the number of edges directed towards it) and an out-degree (the number of
edges directed away from it).

e Adjacency: Two vertices are said to be adjacent if there is an edge connecting them.

e Path: A path in a graph is a sequence of vertices such that each adjacent pair is connected by an edge.
Representation of Graphs
Graphs can be represented in several ways:

1. Adjacency Matrix: An nxnn \times n matrix where nn is the number of vertices. The element aija_{ij} is non-zero
if there is an edge between vertices ii and jj.

o For undirected graphs, the matrix is symmetric.

2. Adjacency List: A collection of lists, where each list corresponds to a vertex and contains all the vertices adjacent
toit.

3. Edge List: A list of pairs of vertices where each pair represents an edge between two vertices.
Multigraphs

A multigraph is a type of graph that allows multiple edges (also called parallel edges) between the same pair of vertices.
This means two vertices can be connected by more than one edge.

e Example: A multigraph can represent a situation where there are multiple routes between two cities in a
transportation network.

Bipartite Graphs

A bipartite graph is a graph whose set of vertices can be divided into two disjoint sets UU and VV such that every edge
connects a vertex in UU to a vertex in VV. In other words, there are no edges within a set UU or within a set VV.

e Example: A bipartite graph can represent a job assignment problem where one set represents workers and the
other set represents jobs.

Planar Graphs

A planar graph is a graph that can be drawn on a plane without any edges crossing. In other words, it is possible to
embed the graph in the plane such that no two edges intersect except at their vertices.

e Example: The graph representing the 4 vertices of a tetrahedron is a planar graph because it can be drawn on a
plane without edge crossings.

Isomorphism and Homeomorphism of Graphs

1. Graph Isomorphism: Two graphs G1=(V1,E1)G_1=(V_1, E_1) and G2=(V2,E2)G_2 = (V_2, E_2) are said to be
isomorphic if there is a one-to-one correspondence between the vertices of G1G_1 and G2G_2, and there is an
edge between two vertices in G1G_1 if and only if there is an edge between the corresponding vertices in
G2G_2. Isomorphic graphs are essentially the same graph but may look different due to the arrangement of their
vertices.

2. Graph Homeomorphism: Two graphs are homeomorphic if one graph can be transformed into the other by
repeatedly replacing edges by paths with two vertices and a single edge, and vice versa.

Euler and Hamiltonian Paths

1. Eulerian Path: An Eulerian path in a graph is a path that visits every edge exactly once. A graph contains an
Eulerian path if and only if it has exactly 0 or 2 vertices with an odd degree.

o Eulerian Circuit: An Eulerian path that starts and ends at the same vertex is called an Eulerian circuit. A
graph has an Eulerian circuit if and only if all its vertices have even degree.



2. Hamiltonian Path: A Hamiltonian path is a path that visits every vertex exactly once. A Hamiltonian circuit is a
Hamiltonian path that starts and ends at the same vertex. Unlike Eulerian paths, there is no simple necessary
and sufficient condition for a graph to have a Hamiltonian path.

Graph Coloring

Graph coloring is the assignment of labels (or "colors") to the vertices of a graph such that no two adjacent vertices
share the same color. The chromatic number of a graph is the smallest number of colors required to color the graph.

e Example: A map coloring problem can be modeled as a graph coloring problem where each region is a vertex,
and an edge connects two vertices if the regions share a border.

Combinatorics
Introduction

Combinatorics is the branch of mathematics focused on counting, arranging, and analyzing discrete structures. It has
applications in computer science, cryptography, probability theory, and many other fields. Key topics in combinatorics
include counting techniques, permutations, combinations, and the famous Pigeonhole Principle.

Counting Techniques

Combinatorics provides several methods for counting the number of ways to arrange or select objects. These techniques
include:

1. Factorial Notation: The number of ways to arrange nn distinct objects is given by ninl.

2. Permutations: A permutation of nn objects is an arrangement of those objects in a specific order. The number
of permutations of nn objects is n!n!, and the number of permutations of rr objects selected from nn objects is
given by P(n,r)=n!(n-r)!P(n, r) = \frac{n!H{(n-r)!}.

3. Combinations: A combination is a selection of objects without regard to order. The number of ways to choose rr
objects from nn objects is given by the binomial coefficient C(n,r)=n!r!(n-r)!C(n, r) = \frac{n!H{r!(n-r)!}.

Pigeonhole Principle

The Pigeonhole Principle is a simple yet powerful principle in combinatorics. It states that if nn items are put into mm
containers, and if n>mn > m, then at least one container must contain more than one item. This principle is used in many
proofs and applications in combinatorics.

e Example: If 13 people are in a room, at least two people must have the same birth month, since there are only
12 months in a year. This is an application of the Pigeonhole Principle.

Conclusion

Graphs and combinatorics are fundamental areas of discrete mathematics with widespread applications in computer
science, operations research, and network theory. Understanding the properties of graphs, such as isomorphism,
Eulerian paths, and graph coloring, provides essential insights into problems related to networks, optimization, and
scheduling. Combinatorics, with its powerful counting techniques and principles like the Pigeonhole Principle, is crucial
for solving problems related to arrangement, selection, and optimization. Together, these topics form a critical
foundation for advanced studies in algorithms, data structures, and mathematical modeling.



