
Chapter Notes: Set Theory & RelaƟons 
Set Theory 

IntroducƟon 

Set Theory is a branch of mathemaƟcal logic that deals with the study of sets, which are well-defined collecƟons of 
objects or elements. The elements of a set can be anything: numbers, leƩers, objects, etc. Set theory forms the 
foundaƟon for many areas of mathemaƟcs and computer science. 

 Set NotaƟon: Sets are typically denoted using curly braces {}. For example, a set of natural numbers less than 5 
can be wriƩen as A={1,2,3,4}A = \{1, 2, 3, 4\}. 

 Types of Sets:  

o Finite Set: A set with a limited number of elements, e.g., A={1,2,3}A = \{1, 2, 3\}. 

o Infinite Set: A set with an unlimited number of elements, e.g., the set of natural numbers N\mathbb{N}. 

o Null or Empty Set: A set with no elements, denoted as ∅\emptyset. 

o Singleton Set: A set containing only one element, e.g., A={a}A = \{a\}. 

o Universal Set: A set containing all the elements under consideraƟon, typically denoted as UU. 

CombinaƟon of Sets 

There are various operaƟons that can be performed on sets to create new sets: 

 Union: The union of two sets AA and BB is the set of all elements that are in either AA or BB (or both). Denoted 
as A∪BA \cup B. 

o Example: A={1,2},B={2,3}⇒A∪B={1,2,3}A = \{1, 2\}, B = \{2, 3\} \Rightarrow A \cup B = \{1, 2, 3\}. 

 IntersecƟon: The intersecƟon of two sets AA and BB is the set of all elements that are in both AA and BB. 
Denoted as A∩BA \cap B. 

o Example: A={1,2},B={2,3}⇒A∩B={2}A = \{1, 2\}, B = \{2, 3\} \Rightarrow A \cap B = \{2\}. 

 Difference: The difference of two sets AA and BB, denoted as A−BA - B, is the set of elements that are in AA but 
not in BB. 

o Example: A={1,2,3},B={2,3}⇒A−B={1}A = \{1, 2, 3\}, B = \{2, 3\} \Rightarrow A - B = \{1\}. 

 Complement: The complement of a set AA, denoted as A′A', is the set of all elements in the universal set UU 
that are not in AA. 

o Example: U={1,2,3,4},A={1,2}⇒A′={3,4}U = \{1, 2, 3, 4\}, A = \{1, 2\} \Rightarrow A' = \{3, 4\}. 

RelaƟons 

DefiniƟon 

A relaƟon on a set AA is a subset of the Cartesian product A×AA \Ɵmes A. It defines a relaƟonship between elements of 
the set. A relaƟon RR on AA is represented as: R⊆A×AR \subseteq A \Ɵmes A For example, if A={1,2,3}A = \{1, 2, 3\}, a 
relaƟon RR can be {(1,2),(2,3)}\{(1, 2), (2, 3)\}, indicaƟng that 1 is related to 2, and 2 is related to 3. 

OperaƟons on RelaƟons 

 Union of RelaƟons: If R1R_1 and R2R_2 are two relaƟons on AA, their union R1∪R2R_1 \cup R_2 is the relaƟon 
containing all pairs that belong to either R1R_1 or R2R_2. 

 IntersecƟon of RelaƟons: The intersecƟon R1∩R2R_1 \cap R_2 consists of all pairs that belong to both R1R_1 
and R2R_2. 



 Difference of RelaƟons: The difference R1−R2R_1 - R_2 consists of all pairs in R1R_1 that are not in R2R_2. 

 Complement of a RelaƟon: The complement of RR is the set of all pairs in A×AA \Ɵmes A that do not belong to 
RR. 

ProperƟes of RelaƟons 

 Reflexive: A relaƟon RR is reflexive if for every element a∈Aa \in A, (a,a)∈R(a, a) \in R. 

 Symmetric: A relaƟon RR is symmetric if for every pair (a,b)∈R(a, b) \in R, (b,a)∈R(b, a) \in R. 

 AnƟsymmetric: A relaƟon RR is anƟsymmetric if for every pair (a,b)∈R(a, b) \in R and (b,a)∈R(b, a) \in R, it must 
be the case that a=ba = b. 

 TransiƟve: A relaƟon RR is transiƟve if whenever (a,b)∈R(a, b) \in R and (b,c)∈R(b, c) \in R, (a,c)∈R(a, c) \in R. 

Composite RelaƟons 

The composite of two relaƟons R1R_1 and R2R_2 is a relaƟon that connects elements via a third element. It is denoted 
as R1∘R2R_1 \circ R_2, and it is defined by: (a,c)∈R1∘R2 if there exists a b such that (a,b)∈R1 and (b,c)∈R2(a, c) \in R_1 
\circ R_2 \text{ if there exists a } b \text{ such that } (a, b) \in R_1 \text{ and } (b, c) \in R_2 

Equality of RelaƟons 

Two relaƟons R1R_1 and R2R_2 on a set AA are equal if they contain the same pairs: R1=R2  ⟺  ∀(a,b)∈A×A,(a,b)∈R1  ⟺ 
 (a,b)∈R2R_1 = R_2 \iff \forall (a, b) \in A \Ɵmes A, (a, b) \in R_1 \iff (a, b) \in R_2 

Recursive DefiniƟon of RelaƟon 

A relaƟon RR can be recursively defined using a base case and a recursive case. For example: 

 Base Case: If (a,a)∈R(a, a) \in R, then aa is related to itself. 

 Recursive Case: If (a,b)∈R(a, b) \in R and (b,c)∈R(b, c) \in R, then (a,c)∈R(a, c) \in R. 

Order of RelaƟons 

The order of a relaƟon refers to the number of elements in the relaƟon. If a relaƟon RR is a subset of A×AA \Ɵmes A, its 
order is the number of pairs it contains. 

 

POSET & Laƫces 

Hasse Diagram 

A Hasse Diagram is a graphical representaƟon of a parƟally ordered set (POSET). In this diagram: 

 Each element is represented by a vertex. 

 An edge from element aa to element bb is drawn if a≤ba \leq b and there is no element cc such that a<c<ba < c < 
b. 

POSET (ParƟally Ordered Set) 

A POSET is a set AA equipped with a binary relaƟon ≤\leq (or any other suitable ordering relaƟon) that saƟsfies the 
following properƟes: 

 Reflexive: a≤aa \leq a for all a∈Aa \in A. 

 AnƟsymmetric: If a≤ba \leq b and b≤ab \leq a, then a=ba = b. 

 TransiƟve: If a≤ba \leq b and b≤cb \leq c, then a≤ca \leq c. 

Laƫces 

A laƫce is a special type of POSET where every pair of elements has both a least upper bound (supremum) and a 
greatest lower bound (infimum). A laƫce is defined as: 



 Join: The least upper bound (supremum) of two elements, denoted a∨ba \vee b. 

 Meet: The greatest lower bound (infimum) of two elements, denoted a∧ba \wedge b. 

ProperƟes of Laƫces 

 Bounded Laƫce: A laƫce that has a greatest element (denoted 11) and a least element (denoted 00). 

 Complemented Laƫce: A laƫce in which every element has a complement. For an element aa, there exists an 
element bb such that a∨b=1a \vee b = 1 and a∧b=0a \wedge b = 0. 

 Distributed Laƫce: A laƫce where the meet and join operaƟons distribute over each other, i.e., 
a∧(b∨c)=(a∧b)∨(a∧c)a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) and a∨(b∧c)=(a∨b)∧(a∨c)a \vee (b 
\wedge c) = (a \vee b) \wedge (a \vee c). 

 Modular Laƫce: A laƫce where the distribuƟve property holds only in certain cases. Specifically, 
a∨(b∧c)=(a∨b)∧(a∨c)a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) holds when a≤ca \leq c. 

 Complete Laƫce: A laƫce where every subset has both a supremum and an infimum. 

Conclusion 

Understanding Set Theory and RelaƟons is crucial for solving many computer science problems, such as database 
theory, algorithms, and graph theory. The concept of POSETs and Laƫces is also fundamental in areas like logic, algebra, 
and discrete mathemaƟcs, where the organizaƟon and relaƟonship of elements play a key role in the design and analysis 
of systems. 

These concepts form the mathemaƟcal backbone of many computaƟonal structures, algorithms, and data 
representaƟons used in modern compuƟng. 

 

Chapter Notes: FuncƟons & Boolean Algebra 
 

FuncƟons 

DefiniƟon of a FuncƟon 

A funcƟon is a relaƟon between two sets, typically denoted as AA and BB, where each element of the set AA (called the 
domain) is associated with exactly one element of the set BB (called the codomain). A funcƟon from set AA to set BB is 
denoted as: 

f:A→Bf: A \to B  

The element f(a)f(a) is the image of a∈Aa \in A under the funcƟon ff. 

 Domain: The set of all possible inputs to the funcƟon. 

 Codomain: The set of all possible outputs. 

 Range: The set of actual outputs produced by the funcƟon for all elements in the domain. 

ClassificaƟon of FuncƟons 

FuncƟons can be classified based on their properƟes or their behavior. Some common classificaƟons include: 

1. One-to-One (InjecƟve) FuncƟon: 

o A funcƟon f:A→Bf: A \to B is one-to-one if different elements in the domain map to different elements 
in the codomain. 

o Formally, f(a1)=f(a2)f(a_1) = f(a_2) implies a1=a2a_1 = a_2. 



2. Onto (SurjecƟve) FuncƟon: 

o A funcƟon f:A→Bf: A \to B is onto if every element of BB is the image of at least one element in AA. 

o For every b∈Bb \in B, there exists at least one a∈Aa \in A such that f(a)=bf(a) = b. 

3. One-to-One Correspondence (BijecƟve) FuncƟon: 

o A funcƟon f:A→Bf: A \to B is bijecƟve if it is both one-to-one and onto. 

o A bijecƟve funcƟon establishes a perfect pairing between the elements of AA and BB, with no elements 
leŌ unpaired in either set. 

4. Constant FuncƟon: 

o A funcƟon f:A→Bf: A \to B is constant if it maps every element of AA to the same element of BB, i.e., 
f(a1)=f(a2)f(a_1) = f(a_2) for all a1,a2∈Aa_1, a_2 \in A. 

5. IdenƟty FuncƟon: 

o A funcƟon f:A→Af: A \to A is the idenƟty funcƟon if f(a)=af(a) = a for all a∈Aa \in A. 

6. Inverse FuncƟon: 

o If a funcƟon f:A→Bf: A \to B is bijecƟve, its inverse f−1:B→Af^{-1}: B \to A exists, and for every element 
b∈Bb \in B, f−1(f(a))=af^{-1}(f(a)) = a and f(f−1(b))=bf(f^{-1}(b)) = b. 

7. Many-to-One FuncƟon: 

o A funcƟon f:A→Bf: A \to B is many-to-one if two or more elements in AA map to the same element in 
BB. 

OperaƟons on FuncƟons 

FuncƟons can be combined or operated upon in several ways: 

1. FuncƟon ComposiƟon: 

o Given two funcƟons f:A→Bf: A \to B and g:B→Cg: B \to C, the composiƟon of ff and gg, denoted by g∘fg 
\circ f, is a funcƟon from AA to CC defined by: (g∘f)(a)=g(f(a))(g \circ f)(a) = g(f(a))  

2. Inverse of a FuncƟon: 

o As menƟoned earlier, if ff is a bijecƟve funcƟon, its inverse f−1f^{-1} is defined such that: 
f−1(f(a))=aandf(f−1(b))=bf^{-1}(f(a)) = a \quad \text{and} \quad f(f^{-1}(b)) = b  

3. Scalar MulƟplicaƟon of FuncƟons: 

o For a constant kk, the scalar mulƟplicaƟon of a funcƟon ff is the funcƟon k⋅Ņ \cdot f where 
(k⋅f)(a)=k⋅f(a)(k \cdot f)(a) = k \cdot f(a). 

Growth of FuncƟons 

The growth rate of a funcƟon describes how quickly the value of the funcƟon increases as its input grows. In computer 
science, this concept is important for analyzing the efficiency of algorithms, parƟcularly in terms of Ɵme complexity. 

 Big-O NotaƟon: Represents the upper bound of the growth rate of a funcƟon, i.e., the worst-case Ɵme 
complexity. 

o For example, if f(n)=O(g(n))f(n) = O(g(n)), then there exists a constant cc such that f(n)≤c⋅g(n)f(n) \leq c 
\cdot g(n) for large nn. 

 Common Growth Rates: 

o Constant: O(1)O(1) 

o Logarithmic: O(logn)O(\log n) 



o Linear: O(n)O(n) 

o QuadraƟc: O(n2)O(n^2) 

o Cubic: O(n3)O(n^3) 

o ExponenƟal: O(2n)O(2^n) 

 

Boolean Algebra 

IntroducƟon 

Boolean Algebra is a branch of algebra that deals with logical variables and operators. It was introduced by George Boole 
in the 19th century and is fundamental in digital circuit design, computer science, and logic theory. 

In Boolean Algebra, the variables can take only two values: True (1) or False (0). The operaƟons on these values include 
AND, OR, and NOT. 

Axioms and Theorems of Boolean Algebra 

Boolean Algebra operates on a set of axioms and theorems that govern its operaƟons. The axioms of Boolean algebra 
are: 

1. IdenƟty Law: 

o A⋅1=AA \cdot 1 = A 

o A+0=AA + 0 = A 

2. Null Law: 

o A⋅0=0A \cdot 0 = 0 

o A+1=1A + 1 = 1 

3. Idempotent Law: 

o A⋅A=AA \cdot A = A 

o A+A=AA + A = A 

4. Complement Law: 

o A⋅A‾=0A \cdot \overline{A} = 0 

o A+A‾=1A + \overline{A} = 1 

5. DistribuƟve Law: 

o A⋅(B+C)=(A⋅B)+(A⋅C)A \cdot (B + C) = (A \cdot B) + (A \cdot C) 

o A+(B⋅C)=(A+B)⋅(A+C)A + (B \cdot C) = (A + B) \cdot (A + C) 

6. CommutaƟve Law: 

o A⋅B=B⋅AA \cdot B = B \cdot A 

o A+B=B+AA + B = B + A 

7. AssociaƟve Law: 

o A⋅(B⋅C)=(A⋅B)⋅CA \cdot (B \cdot C) = (A \cdot B) \cdot C 

o A+(B+C)=(A+B)+CA + (B + C) = (A + B) + C 

Algebraic ManipulaƟon of Boolean Expressions 



Boolean expressions can be simplified using algebraic rules, much like arithmeƟc algebra. This is done to make logical 
circuits more efficient. 

 Example: Simplify A⋅(A+B)A \cdot (A + B): Using the DistribuƟve Law, we get: A⋅(A+B)=A⋅A+A⋅B=A+A⋅B=AA \cdot 
(A + B) = A \cdot A + A \cdot B = A + A \cdot B = A (since A⋅A=AA \cdot A = A). 

SimplificaƟon of Boolean FuncƟons 

The goal of simplifying Boolean funcƟons is to reduce the number of terms and operaƟons, which in turn simplifies the 
implementaƟon of digital circuits. 

 Common Techniques:  

o Boolean IdenƟƟes: Using laws like the Idempotent Law and the Complement Law. 

o Consensus Theorem: A term can be removed from a Boolean expression if its presence does not affect 
the result. For example: A⋅B+A‾⋅C+B⋅C=A⋅B+A‾⋅CA \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B 
+ \overline{A} \cdot C  

o Quine–McCluskey Algorithm: A tabular method used for minimizing Boolean funcƟons. 

Karnaugh Maps (K-Maps) 

Karnaugh maps (or K-maps) are a graphical method for simplifying Boolean funcƟons. It is parƟcularly useful for 
funcƟons with up to six variables. 

 Procedure: 

o Plot the truth table of a Boolean funcƟon in a grid. 

o Group adjacent cells containing 1s (ones) in powers of two (i.e., 1, 2, 4, 8, etc.). 

o For each group, write the simplified Boolean expression for the variables that are constant within the 
group. 

o The final result is the sum (OR) of these simplified expressions. 

 Example: Consider the funcƟon f(A,B,C)=A‾⋅B+A⋅C‾f(A, B, C) = \overline{A} \cdot B + A \cdot \overline{C}. By 
ploƫng this in a K-map and grouping the 1s, we can reduce the expression. 

Conclusion 

FuncƟons and Boolean Algebra are essenƟal topics in discrete mathemaƟcs and computer science. FuncƟons help 
describe relaƟonships between sets and are foundaƟonal to areas such as algorithms and data structures. Boolean 
Algebra, on the other hand, plays a crucial role in simplifying logical expressions and designing efficient digital circuits, 
which are integral to compuƟng systems. Understanding these concepts enables beƩer problem-solving, algorithm 
opƟmizaƟon, and circuit design. 

 

Chapter Notes: Theory of Logic & Predicate Logic 
 

Theory of Logic 

ProposiƟon 

A proposiƟon (also known as a statement) is a declaraƟve sentence that is either true or false, but not both. In logic, 
proposiƟons are the basic building blocks of logical reasoning. They are denoted by symbols such as PP, QQ, RR, etc. 

 Example:  

o "The sky is blue" is a proposiƟon because it can be true or false. 



o "2 + 2 = 5" is also a proposiƟon, but it is false. 

A proposiƟon is oŌen represented in logical notaƟon as PP, and its truth value is either True (T) or False (F). 

Truth Tables 

A truth table is a tabular representaƟon of all possible truth values for a set of proposiƟons. It shows the outcome of 
logical operaƟons (like AND, OR, NOT, etc.) on those proposiƟons. Truth tables help in analyzing the validity of logical 
expressions. 

 Example of a Truth Table for AND (P∧QP \land Q): 

PP QQ P∧QP \land Q 

T T T 

T F F 

F T F 

F F F 

This truth table shows that P∧QP \land Q is true only when both PP and QQ are true. 

Tautology 

A tautology is a logical expression that is always true, regardless of the truth values of the individual proposiƟons. In 
other words, a tautology is a formula that evaluates to true for every possible combinaƟon of truth values of its 
proposiƟons. 

 Example:  

o P∨¬PP \lor \neg P (Law of excluded middle): This is a tautology because, whether PP is true or false, 
P∨¬PP \lor \neg P will always be true. 

SaƟsfiability 

A logical expression is saƟsfiable if there exists at least one combinaƟon of truth values for its variables that makes the 
expression true. If an expression can be made true for some assignment of truth values, it is said to be saƟsfiable. 

 Example:  

o The expression P∧QP \land Q is saƟsfiable because there is a combinaƟon of PP and QQ (specifically, 
P=TP = T and Q=TQ = T) that makes it true. 

ContradicƟon 

A contradicƟon is a logical expression that is always false, regardless of the truth values of the proposiƟons involved. A 
contradicƟon cannot be saƟsfied under any condiƟons. 

 Example:  

o P∧¬PP \land \neg P is a contradicƟon because it asserts that PP is both true and false at the same Ɵme, 
which is impossible. 

Algebra of ProposiƟons 

The algebra of proposiƟons refers to the set of operaƟons and rules used to manipulate and simplify logical expressions. 
It involves a set of logical connecƟves, such as AND, OR, NOT, and implicaƟon, which follow specific algebraic rules 
(analogous to the laws of algebra in arithmeƟc). 

 Basic OperaƟons: 

o ConjuncƟon (AND): P∧QP \land Q 

o DisjuncƟon (OR): P∨QP \lor Q 



o NegaƟon (NOT): ¬P\neg P 

o ImplicaƟon: P→QP \to Q 

o BicondiƟonal: P↔QP \leŌrightarrow Q 

 Laws in the Algebra of ProposiƟons: 

o IdenƟty Law: P∧T=PP \land T = P, P∨F=PP \lor F = P 

o DominaƟon Law: P∧F=FP \land F = F, P∨T=TP \lor T = T 

o Idempotent Law: P∧P=PP \land P = P, P∨P=PP \lor P = P 

o Double NegaƟon Law: ¬(¬P)=P\neg(\neg P) = P 

o De Morgan’s Laws:  

 ¬(P∧Q)=¬P∨¬Q\neg(P \land Q) = \neg P \lor \neg Q 

 ¬(P∨Q)=¬P∧¬Q\neg(P \lor Q) = \neg P \land \neg Q 

Theory of Inference 

In logic, inference refers to the process of deriving new proposiƟons from exisƟng ones based on logical rules. An 
inference rule allows you to make conclusions from premises. 

 Example of Inference Rules:  

o Modus Ponens: If P→QP \to Q and PP, then QQ. 

o Modus Tollens: If P→QP \to Q and ¬Q\neg Q, then ¬P\neg P. 

o HypotheƟcal Syllogism: If P→QP \to Q and Q→RQ \to R, then P→RP \to R. 

Inferences can be made through deducƟve reasoning, where the conclusion necessarily follows from the premises, or 
inducƟve reasoning, where the conclusion is likely but not certain. 

 

Predicate Logic 

First Order Predicate 

Predicate logic extends proposiƟonal logic by involving predicates and quanƟfiers. A predicate is a funcƟon that takes 
one or more arguments and returns a proposiƟon. A first-order predicate is a predicate that takes one argument, oŌen 
represented by a variable. 

 Example:  

o P(x)P(x) could represent "x is a prime number." 

o ∀x P(x)\forall x \, P(x) means "For all x, x is a prime number." 

A predicate logic expression involves not only proposiƟons but also variables and funcƟons that can take values from a 
specific domain. 

Well-formed Formula (WFF) of Predicate Logic 

A well-formed formula (WFF) in predicate logic is a syntacƟcally correct expression constructed from predicates, 
variables, logical connecƟves, and quanƟfiers. The structure of a WFF follows rules similar to those in proposiƟonal logic, 
but with added complexity due to the involvement of predicates and quanƟfiers. 

 Example of WFF:  

o ∀x (P(x)→Q(x))\forall x \, (P(x) \to Q(x)): "For all x, if x is a prime, then x is greater than 1." 

o ∃x P(x)\exists x \, P(x): "There exists an x such that x is prime." 



QuanƟfiers 

In predicate logic, quanƟfiers are used to specify the scope of a variable in a logical expression. There are two main 
types of quanƟfiers: 

1. Universal QuanƟfier ( ∀\forall ): 

o The universal quanƟfier ∀x\forall x indicates that the statement it precedes is true for all values of xx in 
the domain. 

o Example: ∀x P(x)\forall x \, P(x) means "For all xx, P(x)P(x) is true." 

2. ExistenƟal QuanƟfier ( ∃\exists ): 

o The existenƟal quanƟfier ∃x\exists x asserts that there is at least one value of xx for which the statement 
is true. 

o Example: ∃x P(x)\exists x \, P(x) means "There exists at least one xx such that P(x)P(x) is true." 

Inference Theory of Predicate Logic 

Inference in predicate logic involves deriving conclusions from a set of premises using logical rules. Just like in 
proposiƟonal logic, predicate logic has inference rules that allow you to derive conclusions from given premises. 
However, predicate logic also includes rules for handling quanƟfiers and variables. 

 Rules of Inference for QuanƟfiers: 

o Universal InstanƟaƟon (UI): From ∀x P(x)\forall x \, P(x), you can infer P(a)P(a) for any parƟcular aa. 

o ExistenƟal GeneralizaƟon (EG): From P(a)P(a), you can infer ∃x P(x)\exists x \, P(x). 

o Universal GeneralizaƟon (UG): From a conclusion about a parƟcular element, you can generalize to all 
elements, i.e., from P(a)P(a) for an arbitrary aa, infer ∀x P(x)\forall x \, P(x). 

 Example of Inference: 

o Given the premises ∀x (P(x)→Q(x))\forall x \, (P(x) \to Q(x)) and P(a)P(a), we can infer Q(a)Q(a) by 
Universal InstanƟaƟon and Modus Ponens. 

Conclusion 

Theory of Logic and Predicate Logic provide the foundaƟonal structures for reasoning about truth, validity, and 
inference in mathemaƟcs, computer science, and arƟficial intelligence. While proposiƟonal logic focuses on simple 
statements and their relaƟonships, predicate logic allows for more complex statements involving variables and 
quanƟfiers, making it a powerful tool for formal reasoning. The rules and principles discussed in this chapter are 
essenƟal for understanding how logical systems work, forming the basis for logical proofs, programming languages, and 
reasoning systems. 

 

 

Chapter Notes: Algebraic Structures 
 

Algebraic Structures: DefiniƟon 

In mathemaƟcs, an algebraic structure is a set of elements equipped with one or more operaƟons that saƟsfy specific 
axioms or rules. These operaƟons are typically binary (involving two elements from the set), and the structures are 
fundamental in various branches of mathemaƟcs, including group theory, ring theory, and field theory. 

Key Types of Algebraic Structures: 



 Group: A set with a binary operaƟon that saƟsfies four properƟes: closure, associaƟvity, idenƟty element, and 
inverƟbility. 

 Ring: A set equipped with two operaƟons (addiƟon and mulƟplicaƟon) that saƟsfies certain properƟes, such as 
associaƟvity and distribuƟvity. 

 Field: A ring where every non-zero element has a mulƟplicaƟve inverse. 

 

Groups 

DefiniƟon of a Group 

A group is an algebraic structure GG with a binary operaƟon (oŌen denoted as ⋅\cdot or ++) that saƟsfies four 
fundamental properƟes: 

1. Closure: For all a,b∈Ga, b \in G, the result of the operaƟon a⋅ba \cdot b must also belong to GG. 

2. AssociaƟvity: For all a,b,c∈Ga, b, c \in G, the equaƟon (a⋅b)⋅c=a⋅(b⋅c)(a \cdot b) \cdot c = a \cdot (b \cdot c) must 
hold. 

3. IdenƟty Element: There exists an idenƟty element e∈Ge \in G such that for every element a∈Ga \in G, 
a⋅e=e⋅a=aa \cdot e = e \cdot a = a. 

4. Inverse Element: For every element a∈Ga \in G, there exists an inverse element a−1∈Ga^{-1} \in G such that 
a⋅a−1=a−1⋅a=ea \cdot a^{-1} = a^{-1} \cdot a = e. 

Subgroups and Order of Groups 

 A subgroup HH of a group GG is a subset of GG that itself forms a group under the same operaƟon as GG. For HH 
to be a subgroup, it must saƟsfy the group properƟes: 

1. Closure: If a,b∈Ha, b \in H, then a⋅b∈Ha \cdot b \in H. 

2. IdenƟty: The idenƟty element of GG must be in HH. 

3. Inverses: If a∈Ha \in H, then a−1∈Ha^{-1} \in H. 

 The order of a group is the number of elements in the group, denoted ∣G∣|G|. The order of an element a∈Ga \in 
G, denoted o(a)o(a), is the smallest posiƟve integer nn such that an=ea^n = e (where ee is the idenƟty element). 

Cyclic Groups 

A group GG is called cyclic if there exists an element g∈Gg \in G such that every element of GG can be wriƩen as gng^n 
for some integer nn. The group is said to be generated by gg, and gg is called a generator of the group. A cyclic group is 
isomorphic to the addiƟve group of integers modulo some nn, denoted Zn\mathbb{Z}_n. 

 Example: Z5\mathbb{Z}_5 under addiƟon modulo 5 is a cyclic group generated by 11. 

Cosets 

A coset is a subset of a group formed by adding (or mulƟplying) a fixed element aa to each element of a subgroup HH of 
GG. There are two types of cosets: 

1. LeŌ Coset: A leŌ coset of HH with respect to a∈Ga \in G is the set aH={a⋅h∣h∈H}aH = \{ a \cdot h \mid h \in H \}. 

2. Right Coset: A right coset of HH with respect to a∈Ga \in G is the set Ha={h⋅a∣h∈H}Ha = \{ h \cdot a \mid h \in H 
\}. 

Cosets of a subgroup parƟƟon the group into disjoint subsets. 

Lagrange’s Theorem 

Lagrange’s Theorem states that if GG is a finite group and HH is a subgroup of GG, then the order (number of elements) 
of HH divides the order of GG. That is, 



∣G∣=∣H∣⋅[G:H]|G| = |H| \cdot [G:H]  

where [G:H][G:H] is the index of HH in GG, represenƟng the number of disƟnct cosets of HH in GG. 

 Example: In the group Z6\mathbb{Z}_6 (integers modulo 6), the subgroups are {0}\{0\}, {0,3}\{0, 3\}, and 
{0,1,2,3,4,5}\{0, 1, 2, 3, 4, 5\}. The orders of these subgroups divide 6. 

Normal Subgroups 

A normal subgroup NN of a group GG is a subgroup that is invariant under conjugaƟon by elements of GG. That is, for all 
g∈Gg \in G and n∈Nn \in N, the element g⋅n⋅g−1∈Ng \cdot n \cdot g^{-1} \in N. Normal subgroups are important 
because the quoƟent group G/NG/N can be formed. 

 Example: In Z6\mathbb{Z}_6, the subgroup {0,3}\{0, 3\} is normal because 3+x≡x+33 + x \equiv x + 3 modulo 6 
for all xx. 

 

PermutaƟon Groups and Symmetric Groups 

PermutaƟon Groups 

A permutaƟon is a rearrangement of elements in a set. The set of all permutaƟons of a finite set SS forms a group called 
the symmetric group, denoted SnS_n, where nn is the number of elements in SS. 

 Example: The symmetric group S3S_3 consists of all possible permutaƟons of three elements {1,2,3}\{1, 2, 3\}, 
which are the elements: {(1),(12),(13),(23),(132),(123)}\{ (1), (12), (13), (23), (132), (123) \}. 

The operaƟon in a symmetric group is composiƟon of permutaƟons, which is associaƟve, has an idenƟty permutaƟon 
(which leaves elements unchanged), and each permutaƟon has an inverse. 

Symmetric Groups 

The symmetric group SnS_n is the group of all permutaƟons of nn elements. The order of SnS_n is n!n! (factorial), and 
the group consists of all possible bijecƟons (one-to-one and onto funcƟons) from the set {1,2,…,n}\{1, 2, \ldots, n\} to 
itself. 

 

Group Homomorphisms 

DefiniƟon of Group Homomorphisms 

A group homomorphism is a funcƟon φ:G→H\varphi: G \to H between two groups GG and HH that preserves the group 
operaƟon. That is, for all a,b∈Ga, b \in G, 

φ(a⋅b)=φ(a)⋅φ(b)\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)  

A homomorphism must map the idenƟty element of GG to the idenƟty element of HH, and it must map the inverse of 
each element in GG to the inverse of the image in HH. 

 Example: The map φ:Z6→Z3\varphi: \mathbb{Z}_6 \to \mathbb{Z}_3, given by φ(x)=xmod  3\varphi(x) = x \mod 
3, is a homomorphism because it preserves addiƟon modulo 6 and modulo 3. 

Kernel and Image of a Homomorphism 

 The kernel of a homomorphism φ:G→H\varphi: G \to H is the set of elements in GG that map to the idenƟty 
element of HH, i.e., ker(φ)={g∈G∣φ(g)=eH}\text{ker}(\varphi) = \{g \in G \mid \varphi(g) = e_H\}. 

 The image of a homomorphism is the set of all elements in HH that are the image of some element of GG, i.e., 
im(φ)={φ(g)∣g∈G}\text{im}(\varphi) = \{\varphi(g) \mid g \in G\}. 

 

Rings and Fields 



Rings 

A ring is an algebraic structure consisƟng of a set RR equipped with two operaƟons: addiƟon (+) and mulƟplicaƟon (×). A 
ring must saƟsfy the following properƟes: 

1. (R,+)(R, +) is an abelian group (i.e., addiƟon is commutaƟve and associaƟve, and there is an addiƟve idenƟty). 

2. MulƟplicaƟon is associaƟve. 

3. DistribuƟvity: MulƟplicaƟon distributes over addiƟon, i.e., a⋅(b+c)=a⋅b+a⋅ca \cdot (b + c) = a \cdot b + a \cdot c 
and (a+b)⋅c=a⋅c+b⋅c(a + b) \cdot c = a \cdot c + b \cdot c. 

4. MulƟplicaƟve idenƟty (opƟonal): If there is an element 11 such that a⋅1=aa \cdot 1 = a for all a∈Ra \in R, the 
ring is called a unital ring. 

 Example: The set of integers Z\mathbb{Z} with usual addiƟon and mulƟplicaƟon is a ring. 

Fields 

A field is a ring with the addiƟonal property that every non-zero element has a mulƟplicaƟve inverse. Fields have the 
following properƟes: 

1. (F,+)(F, +) is an abelian group. 

2. (F∖{0},⋅)(F \setminus \{0\}, \cdot) is an abelian group (mulƟplicaƟve inverses exist for all non-zero elements). 

3. DistribuƟvity of mulƟplicaƟon over addiƟon holds. 

 Example: The set of raƟonal numbers Q\mathbb{Q}, real numbers R\mathbb{R}, and complex numbers 
C\mathbb{C} are fields. 

 

Conclusion 

Algebraic structures like groups, rings, and fields form the foundaƟon of many areas of mathemaƟcs and computer 
science. Groups are fundamental to symmetry, algebraic operaƟons, and cryptography, while rings and fields play vital 
roles in algebraic number theory, polynomial equaƟons, and coding theory. Understanding these structures and their 
properƟes is crucial for solving complex mathemaƟcal problems and modeling various systems. 

 

 

Chapter Notes: Graphs and Combinatorics 
 

Graphs 

DefiniƟon and Terminology 

A graph GG is a mathemaƟcal structure consisƟng of a set of verƟces (also called nodes) and a set of edges (also called 
arcs or links), where each edge connects a pair of verƟces. The basic components of a graph can be formally defined as 
follows: 

 VerƟces: The individual points in the graph, typically represented by V(G)V(G). 

 Edges: The connecƟons between verƟces, oŌen represented as E(G)E(G). Each edge connects two verƟces, and 
may be directed (in a directed graph) or undirected (in an undirected graph). 

The graph can be represented as a pair G=(V,E)G = (V, E), where VV is the set of verƟces, and EE is the set of edges. 



 Degree: The degree of a vertex vv in an undirected graph is the number of edges incident to it. In a directed 
graph, a vertex has an in-degree (the number of edges directed towards it) and an out-degree (the number of 
edges directed away from it). 

 Adjacency: Two verƟces are said to be adjacent if there is an edge connecƟng them. 

 Path: A path in a graph is a sequence of verƟces such that each adjacent pair is connected by an edge. 

RepresentaƟon of Graphs 

Graphs can be represented in several ways: 

1. Adjacency Matrix: An n×nn \Ɵmes n matrix where nn is the number of verƟces. The element aija_{ij} is non-zero 
if there is an edge between verƟces ii and jj.  

o For undirected graphs, the matrix is symmetric. 

2. Adjacency List: A collecƟon of lists, where each list corresponds to a vertex and contains all the verƟces adjacent 
to it. 

3. Edge List: A list of pairs of verƟces where each pair represents an edge between two verƟces. 

MulƟgraphs 

A mulƟgraph is a type of graph that allows mulƟple edges (also called parallel edges) between the same pair of verƟces. 
This means two verƟces can be connected by more than one edge. 

 Example: A mulƟgraph can represent a situaƟon where there are mulƟple routes between two ciƟes in a 
transportaƟon network. 

BiparƟte Graphs 

A biparƟte graph is a graph whose set of verƟces can be divided into two disjoint sets UU and VV such that every edge 
connects a vertex in UU to a vertex in VV. In other words, there are no edges within a set UU or within a set VV. 

 Example: A biparƟte graph can represent a job assignment problem where one set represents workers and the 
other set represents jobs. 

Planar Graphs 

A planar graph is a graph that can be drawn on a plane without any edges crossing. In other words, it is possible to 
embed the graph in the plane such that no two edges intersect except at their verƟces. 

 Example: The graph represenƟng the 4 verƟces of a tetrahedron is a planar graph because it can be drawn on a 
plane without edge crossings. 

Isomorphism and Homeomorphism of Graphs 

1. Graph Isomorphism: Two graphs G1=(V1,E1)G_1 = (V_1, E_1) and G2=(V2,E2)G_2 = (V_2, E_2) are said to be 
isomorphic if there is a one-to-one correspondence between the verƟces of G1G_1 and G2G_2, and there is an 
edge between two verƟces in G1G_1 if and only if there is an edge between the corresponding verƟces in 
G2G_2. Isomorphic graphs are essenƟally the same graph but may look different due to the arrangement of their 
verƟces. 

2. Graph Homeomorphism: Two graphs are homeomorphic if one graph can be transformed into the other by 
repeatedly replacing edges by paths with two verƟces and a single edge, and vice versa. 

Euler and Hamiltonian Paths 

1. Eulerian Path: An Eulerian path in a graph is a path that visits every edge exactly once. A graph contains an 
Eulerian path if and only if it has exactly 0 or 2 verƟces with an odd degree. 

o Eulerian Circuit: An Eulerian path that starts and ends at the same vertex is called an Eulerian circuit. A 
graph has an Eulerian circuit if and only if all its verƟces have even degree. 



2. Hamiltonian Path: A Hamiltonian path is a path that visits every vertex exactly once. A Hamiltonian circuit is a 
Hamiltonian path that starts and ends at the same vertex. Unlike Eulerian paths, there is no simple necessary 
and sufficient condiƟon for a graph to have a Hamiltonian path. 

Graph Coloring 

Graph coloring is the assignment of labels (or "colors") to the verƟces of a graph such that no two adjacent verƟces 
share the same color. The chromaƟc number of a graph is the smallest number of colors required to color the graph. 

 Example: A map coloring problem can be modeled as a graph coloring problem where each region is a vertex, 
and an edge connects two verƟces if the regions share a border. 

 

Combinatorics 

IntroducƟon 

Combinatorics is the branch of mathemaƟcs focused on counƟng, arranging, and analyzing discrete structures. It has 
applicaƟons in computer science, cryptography, probability theory, and many other fields. Key topics in combinatorics 
include counƟng techniques, permutaƟons, combinaƟons, and the famous Pigeonhole Principle. 

CounƟng Techniques 

Combinatorics provides several methods for counƟng the number of ways to arrange or select objects. These techniques 
include: 

1. Factorial NotaƟon: The number of ways to arrange nn disƟnct objects is given by n!n!. 

2. PermutaƟons: A permutaƟon of nn objects is an arrangement of those objects in a specific order. The number 
of permutaƟons of nn objects is n!n!, and the number of permutaƟons of rr objects selected from nn objects is 
given by P(n,r)=n!(n−r)!P(n, r) = \frac{n!}{(n-r)!}. 

3. CombinaƟons: A combinaƟon is a selecƟon of objects without regard to order. The number of ways to choose rr 
objects from nn objects is given by the binomial coefficient C(n,r)=n!r!(n−r)!C(n, r) = \frac{n!}{r!(n-r)!}. 

Pigeonhole Principle 

The Pigeonhole Principle is a simple yet powerful principle in combinatorics. It states that if nn items are put into mm 
containers, and if n>mn > m, then at least one container must contain more than one item. This principle is used in many 
proofs and applicaƟons in combinatorics. 

 Example: If 13 people are in a room, at least two people must have the same birth month, since there are only 
12 months in a year. This is an applicaƟon of the Pigeonhole Principle. 

 

Conclusion 

Graphs and combinatorics are fundamental areas of discrete mathemaƟcs with widespread applicaƟons in computer 
science, operaƟons research, and network theory. Understanding the properƟes of graphs, such as isomorphism, 
Eulerian paths, and graph coloring, provides essenƟal insights into problems related to networks, opƟmizaƟon, and 
scheduling. Combinatorics, with its powerful counƟng techniques and principles like the Pigeonhole Principle, is crucial 
for solving problems related to arrangement, selecƟon, and opƟmizaƟon. Together, these topics form a criƟcal 
foundaƟon for advanced studies in algorithms, data structures, and mathemaƟcal modeling. 

 


